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Abstract: To obtain a comprehensive assessment of metabolite levels from extracts of leukocytes, we
have recorded ultrahigh-resolution 1H-13C HSQC NMR spectra of cell extracts, which exhibit spectral
signatures of numerous small molecules. However, conventional acquisition of such spectra is time-
consuming and hampers measurements on multiple samples, which would be needed for statistical analysis
of metabolite concentrations. Here we show that the measurement time can be dramatically reduced without
loss of spectral quality when using nonlinear sampling (NLS) and a new high-fidelity forward maximum-
entropy (FM) reconstruction algorithm. This FM reconstruction conserves all measured time-domain data
points and guesses the missing data points by an iterative process. This consists of discrete Fourier
transformation of the sparse time-domain data set, computation of the spectral entropy, determination of
a multidimensional entropy gradient, and calculation of new values for the missing time-domain data points
with a conjugate gradient approach. Since this procedure does not alter measured data points, it reproduces
signal intensities with high fidelity and does not suffer from a dynamic range problem. As an example we
measured a natural abundance 1H-13C HSQC spectrum of metabolites from granulocyte cell extracts. We
show that a high-resolution 1H-13C HSQC spectrum with 4k complex increments recorded linearly within
3.7 days can be reconstructed from one-seventh of the increments with nearly identical spectral appearance,
indistinguishable signal intensities, and comparable or even lower root-mean-square (rms) and peak noise
patterns measured in signal-free areas. Thus, this approach allows recording of ultrahigh resolution 1H-
13C HSQC spectra in a fraction of the time needed for recording linearly sampled spectra.

Introduction

Comprehensive measurements of the concentrations of large
numbers of metabolites can provide detailed insights into the
state of cells.1,2 This has the potential of being used to diagnose
disease, to follow the effect of drug treatment, or to study
toxicity. Comparison of metabolite samples from different
groups, such as healthy and sick individuals, or normal and
transformed cells, may lead to identification of biomarkers that

can be invaluable for targeted disease diagnosis or for under-
standing metabolic pathways and mechanisms of disease.
Metabolic profiling of cell lines may lead to new insights into
metabolic pathways and their alteration in disease.

Assessment of metabolite levels in metabolomics studies has
primarily relied on mass spectroscopy, NMR spectroscopy,
chromatographic separation techniques, and various multivariate
data analysis techniques.1-3 Among the NMR methods, one-
dimensional (1D)1H spectroscopy is most commonly used,
where the spectrum is divided into a limited number of buckets.
The signal intensities of the buckets are either directly compared
between multiple samples using principle component analysis
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(PCA) or, if a prior model is assumed, partial least-square
discriminant analysis (PLS-DA), or similar statistical approaches
are used in order to separate groups of samples. All of these
are done in an effort to identify the metabolites (biomarkers)
that are most different between the groups.4 Alternatively, 1D
NMR spectra have been directly fitted to databases of metabolite
reference spectra to obtain concentrations of the most abundant
molecules in a metabolite mixture.5 Occasionally, two-
dimensional (2D) NMR spectra have been used to enhance the
spectroscopicresolutionformoredetailedmetaboliteidentification.6-10

Resonances of metabolites typically have very long transverse
relaxation times so that 2D NMR spectra, such as1H-13C
HSQC or1H-1H TOCSY, can principally be recorded at very
high resolution and can resolve nearly all metabolite signals.
However, this requires a large number of increments, which
makes data acquisition very time consuming and impractical
for recording spectra from multiple samples as is necessary for
statistical analysis.

It has been proposed and experimentally verified in the past
that the measuring times of 2D NMR spectra can be reduced
with nonlinear sampling in the indirect dimensions.11,12 Barna
and co-workers sampled 2D NMR data with an exponential
schedule13 and processed the data with a maximum entropy
method (MEM) relying on the Burg algorithm.14 Subsequently,
nonlinear sampling was seriously pursued by several other
groups.15-19 Processing software was developed that relied on
an alternative maximum entropy (MaxEnt) reconstruction
algorithm that could handle phase-sensitive data and included
adjustable parameters to tune the outcome of the data recon-
struction. This software is available through the Rowland NMR
Toolkit (RNMRTK)15 and has been successfully applied for
processing 2D nonlinearly sampled COSY spectra,20 constant-
time evolution periods of triple-resonance data,21 or quantifica-
tion of HSQC spectra for relaxation experiments.22 Development

of a two-dimensional MaxEnt reconstruction procedure designed
to run in parallel on workstation clusters23 has stimulated several
applications to explore optimum evolution times,24 to rapidly
acquire complete sets of triple resonance experiments for
sequential assignments,25 to facilitate side-chain assignments,26

and to enable high-resolution triple resonance experiments.27,28

The principle advantages of nonlinear sampling are increas-
ingly recognized.29 Besides MaxEn reconstruction, other meth-
ods are used for processing nonlinearly recorded spectra, such
as the maximum likelihood method (MLM),30 a Fourier
transformation of nonlinearly spaced data using the Dutt-
Rokhlin algorithm,31 or multidimensional decomposition
(MDD).32-35

A special case for reducing the time to record 3D or higher-
dimensional data is used with sampling along various angles
of the indirect sampling space,36,37 and previously developed
projection reconstruction procedures38 are used for processing
the data. Another strategy for minimizing sampling times is the
reduced dimensionality approach,39 which has been further
developed into the GFT method40 and applied to proteins up to
21 kDa.41 However, to our knowledge, the projection recon-
struction method and the GFT approach have primarily been
applied to rather small systems where sensitivity is less of an
issue. Unlike MaxEnt reconstruction, this class of approaches
is only suited for three- and higher-dimensional experiments
but not applicable to shortening acquisition of 2D experiments.

In the past, we have used the MaxEnt reconstruction
procedure of the Rowland NMR Toolkit (RNMRTK).12 It is
very efficient and ideally suited for handling nonlinearly sampled
data with a low dynamic range, such as triple-resonance spectra
where all peaks have similar intensities. However, processing
of data with a large variation of peak intensities, such as in
NOESYs, TOCSYs, mixtures of metabolites, spectra with
diagonals, or peaks close to the noise level seems to suffer from
effects of nonlinearity of peak intensities. This has previously
been recognized, and remedies for correcting intensities have
been suggested for MaxEnt reconstructions of relaxation data.42

However, there remains the problem of losing weak peaks that
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are barely above noise level, which is a significant problem in
spectra of metabolite mixtures with large variations of peak
intensities.

In another strategy to cope with the dynamic range problem
we examine here whether this issue can be eliminated by using
a new maximum-entropy-related approach that operates on a
different principle. In the classic MaxEnt algorithm, such as
that used by Hoch and Stern,43 the linearity of the reconstruction
depends of the parameter lambda (λ), a Lagrange multiplier that
is required to create the objective functionQ(f) ) S(f) -
λC(f,d), wheref andd are the vectors of reconstructed frequency
domain and measured time domain data points, respectively.

The Shannon entropy is

(which has the same form as Gibbs’ entropy, yet applies to
information content), andC(f,d) is the constraining function
between the measured time-domain data points and those
calculated from the inverse Fourier transformed iteratively
“guessed” mock spectra. By the nature of altering the spectra
in the frequency domain,C(f,d) is always>0, except in very
rare cases. In general, keeping it at zero does not allow for
alteration of data points in the frequency domain.

Here we present a new procedure termedForwardMaximum
entropy (FM) reconstruction for processing nonlinearly sampled
2D NMR data. Similarly to the MaxEnt reconstruction of Hoch
and Stern,12 it aims to minimize a target function that contains
the negative entropy. However, in contrast to the MaxEnt
reconstruction procedure,43 which allows a variation of the
measured data points by maximizing the target functionQ(f) )
S(f) - λC(f,d), the FM reconstruction only optimizes the time-
domain data points that have not been measured and does not
allow for variation of the acquired time-domain data points. We
claim that this approach assures high fidelity of peak intensity
reconstruction. Thus, all experimentally measured data points
are strictly conserved, which we claim enforces correct relative
intensities. In contrast, a procedure that allows variation of
measured data points to minimize the target functionQ(f) is
tempted to do this at the expense of weak peaks. By altering
the method such that the “guessing” occurs in the time domain,
the constraining functionC(f,d) can easily be eliminated, and
the requirement of the Lagrange multiplier thus vanishes. The
objective function is now reduced toQ(f) ) S(f). The imple-
mentation hence requires the “mock” data to be constantly
“guessed” in the time domain, then forward-Fourier transformed,
where they are scored by only calculating the implemented
entropy function. This approach does not seriously bias against
weak signals. We validate this approach with a1H-13C HSQC
spectrum of metabolites from cell extracts recorded with 8k real
increments. Acquisition of the linearly sampled reference
spectrum required 3.7 days on a 600 MHz spectrometer. We
show that the same quality of spectrum can be obtained within
fourteen hours using nonlinear sampling and the FM reconstruc-
tion. This makes possible recording of multiple ultrahigh-
resolution1H-13C HSQC spectra needed for statistical analysis
of metabolomics data.

Materials and Methods

Principles of the Forward Maximum Entropy (FM) Reconstruc-
tion. We pursued reconstruction of a complex time-domain data set
F(d) ) {di; i ) 1, ..., N} where a subset of points{dk; k ) 1, ..., M}
(M < N) has been measured experimentally but all other points are
unknown. We guessed the unknown data points in the time domain.
Initially, all unknown points are set to complex zero or 0+ i0.
Subsequently we processed the spectrum with the fast Fourier transform
(FFT) algorithm and calculated its entropy:

Because many of the data points are fixed and given by the
experimental data setd, we used a simplistic approach of the entropy
S(f) for complex data pointsfk, namely

We pursued to maximizeQ(f) ) S(f) iteratively using the forward
maximum entropy (FM) reconstruction method proposed here that
maintains the experimental time-domain data points unaltered. Since
this approach is equivalent to minimizing the negative entropy, we
defined the target functionT(f) ) -S(f), which we aimed to minimize.
T(f) is related to the norm of a spectrum, and minimizing it reduces
the total signal and noise subject to maintaining the measured time-
domain data points.

The FM reconstruction program described here starts by setting the
missing time-domain data points to zero. The data are then transformed
with the FFT algorithm, and the target function of the resulting spectrum
is calculated. Next, the guessed time-domain data points are changed
by (δ, followed by FFT and calculation of the target functions. From
the resulting values a multidimensional gradient ofT(f), ∇TB(f), is
calculated with respect to the missing data pointsdj. Using this gradient
T(f) is minimized with the Polak-Ribiere conjugate gradient method44

to gradually change the guesses of the missing time-domain data points
dj. In the minimization, the real and the imaginary parts of the time-
domain data pointsdj are treated as independent variables. This creates
a total of 2× (N - M) free vectors of∇TB(f), whereN is the number of
grid (final) points, andM is the number of measured time points (see
above), and the difference ofN andM is multiplied by two, because
each point is of complex nature, and the real and imaginary components
are minimized independently of each other.

Minimization is iterated until a cutoff criterion is reached, that is
the value of the target functionT(f) does not decrease by more than
the cutoff parameter, the gradient∇TB(f) is sufficiently small, or a
maximum number of desired iterations have been reached.

The final result of the FM reconstruction procedure is a time-domain
data set where the missing data points are filled in with the optimum
values obtained by minimizingT(f). This time-domain data set can now
be transformed with any available data processing software and can
be manipulated with window functions, zero filling, and/or linear
prediction.

Practical Implementation of FM Reconstruction. The package
FFTW (http://www.fftw.org), version 3.0.1, was used as a C library
for computing discrete Fourier transforms. FFTW is distributed under
the GNU software licenses and is free software. The Polak-Ribiere
conjugate gradient method, gsl_multimin_fdsminimizer_conjugate_pr
of the package GSL, vers 1.5 (GNU Scientific Library, http://
www.gnu.org/software/gsl), was used for minimization purposes. For
data handling, we used the open NMRPipe data format for describing
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NMR data. See http://spin.niddk.nih.gov/bax/software/NMRPipe for a
description of NMRPipe. The resulting C program was initially
compiled using gcc and the i686 instruction set on a Dell dual Xenon
3.0 GHz computer operating under Fedora Core 1 Linux OS. The
program has since been compiled and run on other RedHat Linux
computers. This includes use of 64-bit Opteron computers. A distribut-
able version of the program will be developed and made available.

Generation of Sampling Schedules.Three different sampling
schedules, S1, S2, and S3, were used to pick increments from the total
data set. For S1, increments were picked randomly but with constant
density alongt1. S2 and S3 also sample randomly, but the sampling
density is not constant. S2 uses an exponentially decreasing sampling
density, and S3 applies a linearly decreasing pick rate. The random
sampling schedules are created based on Unix tools with the following
procedure:First, a vector is created with the length of the final number
of complex slotsN (4096 in our case) with associated ordinal number,
starting at 0.Second, in each slot, a number is placed that represents
the sampling density. For the constant density of schedule S1 this is
1.0 for each slot. For the exponentially decaying density of schedule
S2 this is 1.0 for slot 0 and exp{-i/(N - 1)} for slot i ) 1 to N - 1.
For the linear ramp of schedule S3 this is 1.0 for slot 0 and 1.0- i/N
for slot i ) 1 to N - 1. Third, the sum SU(Sk) of all slot values is
calculated for each of the schedules Sk (S1, S2, S3).Fourth, a random
number is generated with the functiondrand48, which yields a 48-bit
random number in the range from 0.0 through 1.0. This random value
is multiplied by the sum SU(Sk) for each of the three schedules.Fifth,
the values in the respective slots are cumulatively added to the point
where the sum is larger than the value created in the fourth point above.
Sixth, the slot number is now registered as a point to be sampled in the
nonlinear acquisition, and the slot value is now set to zero, which
reduces the value of the sum SU(Sk) for the next round.SeVenth, points,
3, 4, 5, and 6, are repeated until the desired number of sampling points
of the nonlinear sampling schedule is reached, and the numbers are
then sorted.

To initialize the random functiondrand48, a seed number is required.
Either a rationally chosen seed number may be given, or a seed number
can be created from the internal clock which registers the number of
seconds since New Years Day, 1970, 0.00.00. The latter is the reference
point for UNIX. While both approaches yield good results, we have
noticed that certain seed numbers yield slightly better reconstructions
and speedier convergence than others. Thus, choosing “favorite” or
“rationally chosen” seed numbers may be preferable to optimize the
obtainable results. For further information on selecting random numbers
and the use ofdrand48, we refer to the UNIX manuals.

Preparation of Cell Extracts from Mouse Baf3 Cells.Mouse BaF3
cells were obtained from Dr. James Griffin at the Dana Farber Cancer
Institute. BaF3 is a murine blood cell line dependent on IL-3 for survival
and differentiation. Cells were cultured in the presence of 5% CO2 at
37 °C in RPMI 1640 medium supplemented with 10% fetal calf serum,
and penicillin/streptomycin. Media for BaF3 was additionally supple-
mented with WEHI 3B conditioned medium as a source of IL-3. About
2 billion cells (∼3 mL) were lysed by the sequential addition of 4 mL
of methanol, 4 mL of chloroform, and 4 mL of water. The sample was
vortexed vigorously after the addition of each solvent, and the final
mixture was stored at-20 °C overnight for phase separation. Complete
separation of phases was achieved by centrifugation at 10000g for 40
min. Only the aqueous phase was used here. It was lyophilized and
dissolved in2H2O for the NMR experiments. Extracts from 2× 109

cells were used for the sample.

NMR Spectroscopy. NMR spectra were recorded on a Bruker
Avance 600 spectrometer equipped with a cryogenic triple-resonance
probe. A set of seven1H-13C HSQC spectra were recorded with 4k
increments (complex) and four scans per increment. A relaxation delay

of 1.2 s was used between scans. Each of the seven spectra was recorded
in 12.7 h; the total measurement time for all seven 2D spectra was 3.7
days.

Results

Recording an Ultrahigh Resolution (UHR) 1H-13C HSQC
Spectrum.As a first step toward identifying metabolites in BaF3
cells we have recorded a 1D spectrum of the aqueous phase of
cell extracts in2H2O, which is shown in Figure 1A. Identification
and measurement of concentrations of metabolites is severely
hampered by spectral overlap. Similarly, 2D NMR spectra
recorded with the typically 100-200 increments suffer from
low resolution in the indirect dimension. Thus, we recorded an
ultrahigh resolution (UHR)1H-13C HSQC spectrum with 4k
increments (complex data points) (Figure 1B). The signal
separation obtained with 4k complex increments resolves
essentially all overlap, as is shown with the expansion of the
most crowded region in Figure 1D. The dispersion of the UHR
spectrum promises to provide a tool for assigning nearly all
metabolites that are present in sufficiently high concentrations
and for measuring concentrations of the individual metabolites.

The 4k complex increments result in a maximumt1 value of
0.16 s. This is rather long compared to typically recorded 2D
1H-13C HSQC experiments; however, it should be compared
with the transverse relaxation times for metabolite carbons,
which are in the order of one or several seconds. As stated
previously, it is desirable to sample evolution times close toT2

to obtain optimal resolution and sensitivity,24 which is still far
off with the conditions used here. To experimentally examine
the optimal number of increments for the sample used here, we
transformed the data set using 4k, 2k, 1k, and 512 complext1
values. Figure 2 shows the effect on a small crowded region
that is indicated with a box in Figure 1D. To have comparable
scaling, all data sets were multiplied with a cosine window and
zero-filled to 8k points. This ensures identical scaling with the
number of points in the FIDs. The 4k and 2k data clearly resolve
all peaks, but the transformations of only 1024 and 512
increments do not. A cross section drawn through the strongest
peak demonstrates that increased resolution also results in larger
peak height. Thus, the relative height of the tallest peak is
3.9 : 3.0 : 2.0 : 1.0 in the 4k, 2k, 1k, and 512 point transforms,
respectively (Figure 2). Although the apparent resolution does
not improve much by going from 2k to 4k complex data points,
in t1 the peak height increases by approximately 30%, which is
close tox2 (41% increase) and consistent with the expectation
(Figure 2). Obviously, doubling the number oft1 values from
2k to 4k doubles the measuring time, and the spectrum shown
here required a total of 3.7 days of instrument time. This is
undesirably long if one wants to measure multiple samples for
determining statistically significant differences of metabolite
concentrations between cell types or different populations of
the same cells. It is indeed the long-term goal of our research
to identify metabolites with concentrations that differ between
cell samples. This includes comparison of normal and malignant
cells, cells before and after treatment with drugs, or any other
pairs of distinct cell types. Measurement of multiple samples
for each cell sample would be difficult with measurement times
of 3.7 days as was used for the spectrum in Figure 1.

To reduce the measurement time we have explored the
nonlinear sampling approach with FM reconstruction for data
processing. We hypothesized that this approach allows recording
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of high-resolution 2D spectra within a reasonably short time
and developed the FM reconstruction method with the goal to
avoid bias against weak peaks.

To test this approach we have recorded seven identical
linearly sampled high resolution1H-13C HSQC spectra acquired
over a period of 12.7 h each. Addition of the seven spectra and
standard FFT yields the spectrum shown in Figure 1. Recording

all seven spectra required 3.7 days of instrument time. The high
resolution achieved is demonstrated by showing an expansion
of a small portion of the most crowded spectral region (Figure
1D). Numerous1H-13C cross-peaks are visible, and all are very
well resolved.

Impact of Nonlinear Sampling with FM Reconstruction
on Resolution and S/N. To avoid impractically long measuring
times and to enable measurements on several samples for
statistical analysis, we tested whether nonlinear sampling and
a suitable processing routine would allow shortening the
measurement time. Since spectra of mixtures of metabolites have
a large variation of intensities, we employed the FM reconstruc-
tion approach outlined above. To test this we have recorded
the data set described above. To get the subsets of nonlinearly
sampled data we (1) added all seven data sets together, (2) we
selected a nonlinear sampled regime from the combined data
set using one-seventh of the increments. This allowed us to
compare spectra recorded linearly within 12.7 h with data
recorded nonlinearly within the same amount of time, with only
one-seventh of the increments but 7 times the number of scans
per increment.

Figure 3 shows different versions of a representative cross
section along the carbon dimension of the1H-13C HSQC
spectrum of Figure 1. Figure 3A provides transformations of
all linearly acquired data points. The lower three traces are from
spectra 2, 4, and 6 out of the seven spectra recorded for 12.7 h
each, using 16 scans per increment. (Note that the peak at 57.35
ppm decreases with time due to metabolic changes ongoing in
the sample; it is only visible in spectra 1-3 and disappears in
later spectra. Although we tried to stabilize the metabolite
samples, some peaks change over a period of 3.7 days, and the
individual spectra are not entirely identical. It was indeed a
motivation for developing the fast method described here to
cope with long-term changes in the metabolite samples.) The
top spectrum is the sum of all seven spectra and represents a
measuring time of 3.7 days with 7× 16 scans per increment.
It demonstrates the gain in signal-to-noise ratio (S/N) by a factor
of x7 compared to the individual spectra, such as 2, 4, or 6
shown in the lower part of the figure. The top spectrum of Figure
3B is the same as in Figure 3A. The lower three traces, however,
are FM reconstructions using only one-seventh of the increments
but 7× 16 scans per increment. Thus, each of the lower three
traces represents the same total measuring time of 12.7 h, equal
to each of the lower traces of Figure 3A. Three different
sampling schedules, S1, S2, and S3, were used to pick
increments from the total data set. For S1, increments are picked
randomly but with constant density alongt1. S2 and S3 also
sample randomly, but the sampling density is not constant. S2
uses an exponentially decreasing sampling density, and S3
applies a linearly decreasing pick rate. As can be seen, the
quality of the three nonlinearly sampled spectra, transformed
with FM, is comparable to that of the top trace, which represents
a 7-fold longer measurement time. There is no obvious bias in
favor of strong peaks or against weak peaks. The three sampling
schedules exhibit similar results, but the schedule with expo-
nentially decreasing weight (S2) seems to have the best S/N
with a small margin. A more systematic examination of
sampling schedules will be required, however, to optimize this
procedure.

Figure 1. NMR spectra of the aqueous fraction of cell extracts from mouse
BaF3 cells in2H2O, pH 6.5, 25°C. (A) 1D 1H NMR spectrum. (B)1H-
13C HSQC spectrum recorded with 4k complex points in the indirect
dimension. (C and D) Expansion of the section indicated with the box in B
and corresponding 1D spectrum. Note that the 2D spectrum of C is a small
portion of the entire spectrum. The 1D spectrum of C also contains signals
from outside the13C region of Figure 2D (compare Figure 1A and 1B).

A R T I C L E S Hyberts et al.

5112 J. AM. CHEM. SOC. 9 VOL. 129, NO. 16, 2007



To further assess the quality of the NLS spectra processed
with FM reconstruction, we analyzed the apparent noise in the
linearly and nonlinearly sampled spectra. Figure 4 shows a small
representative section of the1H-13C HSQC spectrum that
contains strong and weak peaks. Cross sections through the
strongest peak along the carbon dimensions were plotted on
top of the contour plots. The traces from the linearly sampled

spectrum (4 days measuring time) and the nonlinearly sampled
spectrum (12.7 h measuring time) are essentially indistinguish-
able.

For further comparison of the quality of the two spectra, the
apparent noise was measured in a region outside the range that
contains signals (Figure 5). Both the root-mean-square (rms)
noise and the peak noise were measured for the three linearly

Figure 2. Comparison of a small spectral region indicated with a box in Figure 1D transformed with different numbers of increments. Clearly, only 2k and
4k complex points can resolve all peaks. While 2k complex increments seem to resolve all peaks, going to 4k complex points sharpens the peaks and
increases the peak height by approximately 30% (see arrows). To obtain equal scaling in all four cases, the measured data points were multiplied with a
cosine bell and zero-filled to 8k real points.

Figure 3. Comparison of representative cross sections along the13C direction at a proton frequency of 3.76 ppm. (A) Use of the full linearly sampled data.
The bottom three traces are from the full linearly sampled data sets 2, 4, and 6. The top trace is from the average of all seven linearly sampled data sets (sum
of all seven spectra divided by 7). (B) The top trace is the same as in A. The three traces at the bottom, however, are obtained by selecting one-seventh of
the increments of the averaged data set and by transforming with FM reconstruction. In the sampling schedule, S1, one-seventh of the increments were
picked randomly from the averaged data set with equal density alongt1. In schedule S2, one-seventh of the increments were picked with exponentially
decreasing density, and in schedule S3, one-seventh of the increments were picked with linearly decreasing density. Note that the peak at 57.35 ppm
disappears with time and is only visible in spectra 1-3. Although we tried to stabilize the metabolite samples, some peaks change over a period of 3.7 days.
Thus, the spectra 2, 4, and 6 are not entirely identical.
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sampled spectra 2, 4, and 6 as well as the average of all seven
linearly recorded spectra. As expected, both the rms and peak
noise are approximatelyx7 lower when averaging the seven

linearly sampled spectra (left and middle columns). Importantly,
the FM reconstruction of the NLS data picked from the averaged
data set have roughly the same peak noise as the full averaged

Figure 4. Comparison between the linearly sampled 3.7-day experiment and the NLS/FM reconstruction of a 12.7-h subset of increments. Both the 2D plot
of a small portion of the spectrum and the cross section along the13C direction at the position of the strongest peak are nearly indistinguishable. This
demonstrates the high fidelity of the FM reconstruction.

Figure 5. Comparison of rms noise (light) and peak noise (dark) of the cross sections along the13C dimension. Both rms and peak noise are measured
outside of the region that contains signals. The columns labeled 2, 4, and 6 represent three of the seven linearly sampled spectra of 12.7-h duration. The
column labeled “avg” shows rms and peak noise for the average of the seven linearly sampled spectra and corresponds to 3.7 days of data acquisition. As
expected, the noise levels decrease byx7. S1, S2, and S3 show the measured noise values for three sampling schedules of the averaged spectra but use only
one-seventh of the increments. S1 is a randomly distributed schedule, S2 is sampled with exponentially decreasing sampling frequency, and S3 corresponds
to a linearly decreasing ramp.
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data; it is lowest for the exponential schedule S2. For all three
sampling schedules, the rms noise is approximately 2-fold lower
than in the transform of the full linear averaged data set. Thus,
the FM processing of the NLS data sets, which can be acquired
in one-seventh of the measuring time, yield high-quality spectra
comparable in quality to that of the DFT of the full linearly
sampled averaged data set (Figure 5, middle and right columns).

To analyze whether NLS with FM reconstruction affects the
relative intensities of signals, we measured peak heights of all
detectable signals in the carbon cross section for 1613C traces.
In Figure 6, the peak heights in the linear averaged data set are
plotted against the corresponding values in the NLS (random
sampling schedule S1) data set processed with FM reconstruc-
tion. The left-hand side of Figure 6 shows the entire range of
peak heights up to 45× 109. The right-hand side displays an
expansion of the range up to 10× 109. The smallest peaks
measured are around 2× 108, which is about twice the level of
peak noise (see Figure 5). Clearly, there is an excellent
correlation, and there is no bias against weak peaks. Thus,
perfect linearity is found over a dynamic range of 200, the
largest found in the spectra analyzed here. However, the values
in the nonlinearly sampled spectrum are smaller by a constant
offset of approximately the value of the peak noise. This may
be related to the fact that there is noise at the top of peaks as
well, and if noise is reduced by the reconstruction procedure
throughout the spectrum and at the tip of the peaks, the apparent
peak heights decrease by a value in the order of the noise level.
However, a more quantitative analysis of this effect has to be
pursued. Of interest is that a similar empirical observation has
been reported by Hore and co-workers for a different maximum
entropy reconstruction approach.18,19

Discussion

NMR spectra of mixtures of metabolites as obtained from
cell extracts or other metabolomics samples contain a large

number of signals, and high-resolution is needed in 2D spectra
if one wants to resolve all signals. Since the metabolites have
all narrow line widths, the individual signals are resolvable in
2D NMR spectra but only when the experiments are sampled
to long evolution times in the indirect dimension. Previously,
we have argued signals should be recorded to aboutT2

/ in order
to obtain good resolution without significantly deteriorating
signal-to-noise.24 For spectra of metabolites with narrow line
widths this requires sampling to long evolution times and needs
very long measuring times. We have recorded a1H-13C HSQC
spectrum with 8k by 2k (real) data points in thet1 and t2
dimensions, respectively. Estimating that the spectrum contains
as many as 1000 cross-peaks, each peak is defined by 32k data
points in the average. Thus, the information content of linearly
sampled data is large compared to the number of parameters
needed to characterize the spectrum. Thus, it seems feasible to
extract spectral parameters from a reduced data set, such as
obtained with NLS.

The maximumt1 value in the spectrum recorded here is 0.16
s, which is still much less than theT2 of 13C signals of most
metabolites (>1 s). Spectral folding in the indirect dimension
would allow reaching longer evolution times at reasonable
overall duration of the experiments. Attempts toward this goal
are in progress but have not been used initially for convenience
of comparison with database spectra of metabolites. Spectral
folding raises the question of whether the FM method can
reproduce positive and negative signals. The procedure can
handle this very well. Indeed we have obtained positive and
negative peaks, and the reconstructed FIDs are complex. We
phase correct the final spectrum after FFT of the reconstructed
time-domain data set.

We have developed a simple new algorithm that estimates
missing time-domain data points of nonlinearly sampled data
by conjugate gradient minimization of the target functionT(f),
which is constructed from the negative Shannon entropy of the

Figure 6. Comparison of peak heights between the linearly sampled 3.7-day experiment (horizontal) and the randomly sampled 12.7-h experiment (vertical).
The latter provides a high-fidelity reproduction of the peak heights in the full linearly sampled spectrum. (Left) Total range of peak heights of peaks. The
region shown in the expansion on the right is indicated with a box. (Right) Expansion of the section containing weak peaks. Peaks were measured if they
were larger than approximately 0.2× 109, which is approximately twice the amount of peak noise (see Figure 5). Note that the values for the nonlinearly
sampled data are lower than those of the linearly sampled spectra by a constant offset of approximately the value of the peak noise.

FM Reconstruction of NLS Metabolite NMR Spectra A R T I C L E S

J. AM. CHEM. SOC. 9 VOL. 129, NO. 16, 2007 5115



frequency spectrum,S(f). Here, the negative entropy is used as
a convenient convex function that is efficient for minimizing
the target function. It is essentially a norm of the frequency
spectrum. The final spectrum reaches the minimum of the norm
being consistent with the experimentally measured time-domain
data points. We do not normalize the data points of the
frequency spectrum,fk, since they should not be considered
probabilities. Thus, our approach differs from other MaxEnt
methods for NMR spectrum reconstruction,17 which pursue such
normalization. Obviously, the Shannon entropy used here should
not be confused with the thermodynamic or statistical entropy.
Here we could use and have explored other convex functions
to minimize the norm of the spectrum.

We have used zeros for the initial guesses of the missing
data points. One could consider using other starting values.
However, due to the oscillating nature of the free-induction
decays, zero is in the center of the distribution of the possible
expected values. We have explored using other starting values,
such as using the values of adjacent measured points. This did
not alter the outcome but typically extended the time to reach
convergence.

We realize that experimental scientists often face situations
where false minima are found in optimization procedures. We
have examined different sampling schedules, which yielded
almost identical results differing essentially only slightly in the
noise level and the time it takes to reach convergence. Thus,
we think that there is little danger of being trapped in local
minima. However, this is likely to depend on how many data
points are sampled in relation to the complexity of the spectra,
and further investigations of this aspect are to be pursued.

It is worth asking whether the FM reconstruction alters peak
shapes as has been reported for other methods of reconstructing
NLS data. This does not directly apply to the metabolite data
presented here, however. Because of the very long carbon
transverse relaxation times, peaks are defined by one or two
data points only. Thus, no distortion has or can be seen in the
type of data shown here. However, we have started to apply
this method to protein NOESY spectra and do not see significant
distortions of peak shapes as long as we have enough data points
in the indirect dimensions to define all spectral parameters. This
leads to the question of what is the minimum number of
nonlinearly sampled data points to faithfully reconstruct a
spectrum? This depends on the type of spectrum and the density
of signals. A NOESY of a large protein with a long mixing
time and many cross-peaks will require more points than one
of a small protein with a short mixing time.

By principle of design, the FM reconstruction algorithm
presented here does not allow for variation of measured time-
domain data points. Our hypothesis was that this feature would

avoid de-emphasizing weak signals as long as they are
represented in the measured data points. The results shown here
confirm that this is indeed the case. FM reconstruction does
not require setting of parameters for the reconstruction. The only
operator decision to be made is when to terminate the iterative
minimization of the target functionT(f). On the other hand, our
FM reconstruction is not suitable for and cannot be applied to
linearly sampled data sets. However, it could be used for
correcting erroneous or lost data points. The final FM recon-
struction result is a time-domain data set that can be transformed
with any of the available processing programs, manipulated with
apodization functions, or extended with linear prediction. Here
we have used the NMRPipe software package45 for all process-
ing.

While we have applied window functions to the final
reconstructed time-domain data one could also consider doing
this to the initial nonlinearly sampled data. As the reconstruction
method used here is deemed to be of nonlinear nature, there is
no warranty that the reconstruction yields exactly the same result
in these two cases. However, because we are aiming for linear
response of signals, the FM reconstruction has to be at least of
near-linear nature. This means that the FM reconstruction
method should be nearly independent of whether window
functions are applied before or after apodization. In other words,
the result would be extremely similar, within the scope of setting
stop criteria of the minimization routine, and in either case,
apodization does not interfere with the core of the FM method.

Thus far, we have used FM reconstruction for processing
spectra with only one nonlinearly sampled indirect dimension.
However, this approach should be applicable to nD data that
are sampled nonlinearly in more than one indirect dimension.
Here we have used a standard conjugate gradient minimizer,
and processing is relatively slow as reconstruction of one 4k
complex time-domain data set with six-sevenths of the data
points missing takes about 3-5 h on an Opteron computer.
Obviously, the processing time depends on the number of
missing points, and shorter time-domain data can be processed
significantly faster. Processing of 2D spectra benefits from
farming out the reconstruction of FIDs to processors of PC
clusters. However, the current FM reconstruction is significantly
slower than the MaxEnt routine used in the Rowland NMR
Toolkit (RNMRTK), which uses an analytically calculated
gradient for minimizing the target function.

In principle, it is possible to apply FM reconstruction to
higher-dimensional spectra with more than one nonlinearly
sampled dimension, and efforts toward this aim are in progress.
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